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This paper describes a quantitative study of the three-dimensional nature of 
organized motions in a turbulent plane wake. Coherent structures are detected from 
the instantaneous, spatially phase-correlated vorticity field using certain criteria 
based on size, strength and geometry of vortical structures. With several 
combinations of X-wire rakes, vorticity distributions in the spanwise and transverse 
planes are measured in the intermediate region (1Od < 5 < 404 of the plane 
turbulent wake of a circular cylinder at a Reynolds number of 13000 based on the 
cylinder diameter d. Spatial correlations of smoothed vorticity signals as well as 
phase-aligned ensemble-averaged vorticity maps over structure cross-sections yield 
a quantitative measure of the spatial coherence and geometry of organized structures 
in the fully turbulent field. The data demonstrate that the organized structures in the 
nominally two-dimensional wake exhibit significant three-dimensionality even in the 
near field. Using instantaneous velocity and vorticity maps as well as correlations of 
vorticity distributions in different planes, some topological features of the dominant 
coherent structures in a plane wake are inferred. 

1. Introduction 
In our previous experimental work (Hayakawa & Hussain 1985; Hussain & 

Hayakawa 1987, the latter being referenced hereinafter as HH), we developed a new 
technique for the study of organized motions (popularly called ' coherent structures ') 
in turbulent shear flows, succeeded in employing it to map out the temporal 
evolution of the large-scale spanwise vorticity field, inferred the topology of the 
dominant coherent structure, and quantitatively evaluated the dynamical roles of 
the structure. This generic and robust technique which can in principle be applied to 
educe organized structures in any turbulent shear flow, recognizes spatially phase- 
correlated (i.e. coherent) motions underlying an apparently random turbulent flow 
from instantaneous vorticity maps without the use of any external signal for phase 
reference of trigger, and aligns and ensemble-averages different realizations to 
extract coherent and incoherent turbulence properties over the spatial extent of 
coherent atructures. Being based on the vorticity field in a turbulent flow, the 
eduction algorithm can be applied to data obtained by any measurement technique 
as well as to data obtained by numerical simulation (e.g. Metcalfe et ul. 1987~) .  

In  the HH experiment, a rake of eight equally spaced X-wires was employed in the 
intermediate region of a cylinder wake, and the education was based on the spanwise 
vorticity field. The data revealed that there is increasing dispersion in individual 
vortex size, strength and displacement with increasing downstream distance ; this 
dispersion occurs much sooner in the streamwise direction and is considerably more 
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prevalent than was previously suspected. In addition, the data disclosed the relative 
roles of saddles and centres and reaffirmed earlier experimental findings (Hussain 
1980; Hussain & Zaman 1981; Cantwell & Coles 1983; Coles 1984) that the saddle 
region plays a crucial role in turbulence production. This result strongly suggests 
that the braid, connecting successive nominally spanwise vortical structures (i.e. 
rolls), consists of intermediate-scale coherent substructures (i.e. ribs) which are 
dominated by longitudinal vorticity and appear to  be central to  the turbulence 
production mechanism (Hussain 1984). 

Led by these results along with our experiment and numerical simulation of a 
plane mixing layer (Metcalfe et al. 1987a), we concluded that longitudinal vortices 
and turbulence production by vortex stretching are characteristic features of all 
turbulent shear flows (Hussain 1984, 1986). An incidental consequence of this is that 
coherent structures contain regions of significant helicity (defined in the frame of a 
structure) even though locations of peak helicity and dissipation would not coincide 
(Hussain 1986). The rib structures have been observed in a number of visualization 
studies in plane mixing layers (Jimenez, Cogollas & Bernal 1985; Bernal & Roshko 
1986; Lasheras, Cho & Maxworthy 1986) and have been presumed to play a 
substantial role in turbulence mixing. However, the dynamical roles of the ribs 
remain to be explored through quantitative measurements. These longitudinal 
structures must induce spanwise contortion of the spanwise rolls as demonstrated by 
direct numerical simulations (Grinstein, Oran & Hussain 1987 ; Metcalfe et al. 
1987b), even though the strong two-dimensionality of the rolls has been claimed on 
the basis of flow visualizations (Brown & Roshko 1974; Breidenthal 1980) and hot- 
wire measurements of structure footprints (Wygnanski et al. 1979; Browand & 
Troutt 1985). 

Historically, looking back to the studies of a cylinder wake, an early visual 
observation by Taneda (1959) revealed that the breakdown of the shed vortices 
occurred within about 100 diameters downstream from the cylinder and that 
organized smoke patterns, much like the Karman vortex street but of a larger scale, 
reappeared farther downstream. He vaguely suggested that the formation of this 
new structure should be due to  a hydrodynamic instability process. The 
rearrangement of the primary vortex street into new structure has been recently 
examined in further detail by several workers. Matsui & Okude (1981) suggested that 
vortex pairing was responsible for the change of structure spacing downstream, a t  
least for Reynolds numbers lower than 160. Cimbala, Nagib & Roshko (1988) 
resurrected instability as the relevant mechanism (see also Wygnanski, Champagne 
& Marasli 1986). Parenthetically, we have cast strong doubt on the relevance of such 
an analysis based on the mean flow in highly turbulent fields which are dominated 
by large-scale structures a t  time- and lengthscales comparable with those of the 
instability mode (Hussain 1983, 1986). 

Quite a different picture of the far-field structure in the wake had been proposed 
much earlier by Townsend (1956) : the so-called ‘double-roller eddies ’. This structural 
module was reaffirmed (although revised) by the extensive correlation measurements 
of Grant (1958). The Grant model consists of paired counter-rotating eddies, 
perpendicular to the wake centreplane and accompanied by outward mixing jets ’ or 
entraining eddies. More recently, Townsend (1979) showed from multisensor 
measurements of the velocity field that large-scale velocity patterns in the wake had 
a fairly simple form with a distinct periodicity, although they appeared to be very 
complex owing to the superposition of patterns from eddies at all stages of the 
‘ growth-decay-renewal cycle ’. In a follow-up experiment, Mumford ( 1983) showed 
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the predominance of inclined double-roller eddies of several modes ; some were 
confined to one side of the wake centreplane, while some extended across the 
centreplane, and even single-roller eddies were found. A possibility that the two 
roller structures on the two halves of a wake might be parts of a vortex loop 
connecting structures across the wake centreplane has been suggested by many (for 
example, Roshko 1976 ; Coles 1982 ; Savill 1983). However, this apparently plausible 
view remains speculative and needs to be examined by careful quantitative 
measurements or numerical simulations. 

In  contrast to these studies, very little attention has been paid to three- 
dimensional aspects of the developing region of a wake. Our experience, cited earlier, 
strongly suggests that some appreciable three-dimensionality should occur in large- 
scale structures in an otherwise two-dimensional turbulent flow, even in the early 
stages of evolution of coherent structures ; hence the motivation for the present 
study. 

The present experimental work (completed in 1984) was an attempt to  examine 
quantitatively the three-dimensional topology and dynamics of coherent structures 
in a turbulent shear flow. Here, we persist in our assertion that the spatially phase- 
correlated vorticity should be the fundamental quantity to  characterize coherent 
structures (Hussain 1980, 1983). Using multiple cross-wire probes, instantaneous 
distributions of vorticity components in various sectional planes are measured to  
deduce the spatial configuration of the dominant coherent structures. The detection 
and eduction techniques to be used have been developed in our previous work (HH ; 
see also Tso 1983; Tso & Hussain 1989). The measurements are made in the 
intermediate region of a circular cylinder wake ; the large-scale spanwise vortices 
shed from the cylinder are largely in a process of gradual decay, undergoing 
significant three-dimensional distortion. To our knowledge, this is the first attempt 
at simultaneous multi-plane vorticity measurements and eduction of organized 
structures in a turbulent flow. Some of the results discussed in this paper were 
presented earlier (Hayakawa & Hussain 1986). Throughout this paper we use ‘rolls’ 
to denote the dominant, nominally spanwise structures and ‘ribs’ to denote 
longitudinal substructures connecting the rolls. 

2. Experimental set-up and procedures 
The experiment was carried out in an open-return wind tunnel of the Aero- 

dynamics & Turbulence Laboratory of the University of Houston. The facility, 
originally designed for a large plane-mixing-layer flow, is described in detail by 
Hussain & Zaman (1982). A 2.7 em diameter rigid circular cylinder was installed on 
the centreline of the test section of a 92 cm x 46 em cross-section, the cylinder being 
aligned with the longer side. All data were taken a t  a constant free-stream velocity 
U ,  = 7 ms-l; the Reynolds number based on the cylinder diameter d was Red = 

1.3 x 104. Measurements were made by eight X-wire probes connected to a 16-channel 
home-built anemometer set, and velocity signals were stored on digital tape and later 
analysed with a laboratory computer (HP-2100s). 

Ideally, all three components of vorticity must be measured in order to clarify the 
topological features of three-dimensional structures. However, such a demanding 
approach is far beyond the present measurement technology ; in particular, the 
multipoint measurement of the streamwise vorticity cannot be easily achieved. The 
present effort was therefore limited to obtaining the spanwise and transverse 
components of vorticity in either one or two simultaneous sectional planes in the 
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FIGURE 1. Experiment configurations and main notation. 

wake. To this end, four configurations of probe arrangements were employed as 
shown in figure 1 ; single rakes in configurations S1 and T1, and two parallel rakes in 
configurations S2 and T2. The rakes S1 and T1 consist of eight equally spaced X-wire 
probes, and they measure the spanwise and transverse vorticity components 
respectively. The probe arrangement 52 consists of two parallel rakes separated by 
a distance Az in the spanwise direction, each having four X-wire probes, and enables 
measurements of spanwise vorticities in two parallel (Le. 5, y) planes. Similarly, the 
probe arrangement T2 measures transverse vorticities in two parallel (i.e. 2 , z )  planes 
separated by Ay. The distance between the two rakes in the arrangement 52 or T2 
can be varied continuously. However, in either arrangement, the two rakes were 
always positioned in the same streamwise station relative to each other. The crude 
spatial resolution of the vorticity measurement with either rake, dictated by the 
laboratory capability, was considered acceptable for the recognition of large-scale 
events. Figure 1 also shows the coordinate system and some of the relevant flow 
gu an ti ties. 

For an array of X-wires in an (z, y)-plane or an (z, z)-plane with a spatial 
separation As between adjacent probes, the vorticity component normal to that 
plane is, employing the Taylor hypothesis, given by 

av au 1 A~ 
a, = --- x -U,E-L\s' 

ax ay 
spanwise component ; 

au aw 1 AW 
%-+--. O"=%-z As U, At 

transverse component : 

Here, At denotes the time interval between successive digitized data points, and 
U, is the streamwise advection velocity determined experimentally as the celerity of 
vortical structure centre (see HH). The aggregate sampling rate was 20 kHz 
(1.25 kHz per channel), giving At = 0.8ms. Although somewhat crude, we believe 
that this sampling rate is adequate for the detection of large-scale structures. 
Instantaneous vorticities are calculated a t  midpoints between two neighbouring X- 
wires by the central-difference approximation. Structures are recognized from 
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FIGURE 2. Instantaneous (3, maps: (a) x/d = 20, (b)  x/d = 40; contour levels: GZ/&, = +4, +2. 
Time increases from right to left. 

appropriately smoothed vorticity signals, the smoothing being done by the short- 
time averaging technique. Detailed procedures for calculating instantaneous, 
smoothed vorticity are described by HH. The data presented in this paper are for two 
streamwise stations: x/d =; 20 and 40, except for those discussed in 93. 

3. Large-scale spanwise structure 
3.1. Instantaneous spanwise vorticity field 

First, in order to illustrate the nature of large-scale structures, two examples of the 
instantaneous contour maps of (smoothed) spanwise vorticity 3, (tilde denotes 
smoothed quantities) measured by the single rake S1 (with a probe separation 
As = 15 mm, or A6/d = 0.56) at x/d = 20 and 40 are shown in figure 2. The figure 
shows instantaneously occurring temporal events, sliced by the (5, y)-plane, at a 
fixed streamwise station (for further examples of 3, maps, see HH, in which 
instantaneous G- and v“-maps are also included). Time increases from right to left ; this 
time coordinate, used throughout this paper, implies that the flow is from left to 
right. Contour levels are normalized by the local maximum time-mean shear rate 
S ,  = (aa/ay)max ; here, the overbar denotes time-mean quantities. Clockwise and 
counterclockwise vorticities are denoted by broken and solid lines respectively. If 
time is transformed into streamwise distance by assuming Taylor’s hypothesis 
(i.e. x = - U, t ) ,  the abscissa scale corresponds to about one fourth of the transverse 
scale. That is, the streamwise coordinate in figure 2 is compressed by a factor of 4 in 
order to include more structures. 

In  figure 2 (a)  we can easily identify vortices of alternating circulations passing 
through a sectional plane ( z  = 0) at x/d = 20. Recognizing the relatively short 
distance from the cylinder, however, it is rather surprising that considerable 
dispersions in size, strength, transverse displacement and streamwise spacing have 
appeared, as is particularly evident in the left-hand portion of the figure. The 
dispersions are much greater at  x/d = 40 (figure 221). This irregularity of individual 
structures may be due to various factors such as wandering or deformation 
of vortices, distortion induced by ribs, spanwise variation in vorticity due to 
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FIQURE 3. Streamwise variation of global properties : (a) peak coherent vorticity, (b )  advection 
velocity, ( c )  vortex spacing ratio. 0,  present data (Re, = 1.3 x lo4); ----, Cantwell & Coles 
( 1 . 4 ~  10s); D, Kiya & Matsumura (1.6 x lo4); A, A, Armstrong et al. ( 2 . 1 5 ~  lo4); ---, Matsui 
& Okude (80-140). 

non-uniform stretching, partial tearing, cut-and-connect (i .e. crosslinking), etc. 
Regardless of which of these factors is predominant, the spanwise distribution of 
vorticity becomes non-uniform rapidly in 5. Therefore, in order to gain further 
insight into the wake structure, the three-dimensional aspects of the phenomenon 
should be investigated. 

3.2. Cornparison with other data 
Before proceeding to a consideration of three-dimensional aspects, we show in figure 
3 some comparisons of our results from the single rake S1 with recent relevant data 
from other investigations. This comparison of streamwise variations of global 
properties characterizing the structure development is included in order to check 
consistency among data obtained in different laboratories using different facilities 
and techniques. Figure 3 includes (a )  ensemble-averaged peak vorticity (w,),, ( b )  
structure advection velocity U,, and ( c )  vortex spacing (i.e. transverse to longitudinal 
spacing) ratio K .  Among the other studies, Cantwell & Coles (1983) used an upstream 
triggering method based on the cylinder surface pressure near the separation point, 
whereas Kiya & Matsumura (1985) and Armstrong, Barnes & Grant (1987) employed 
local detection schemes. Of the latter two, the first utilized smoothed periodic 
transverse velocity (v )  fluctuations on the wake centreplane and the second used 
irrotational streamwise velocity (u) fluctuations outside the shear region as the 
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reference signals for triggering phase-locked measurements. Reynolds number(s) for 
each experiment are given in the figure caption. 

I n  general, our data are not inconsistent with others’ results, and are in fairly good 
agreement with those of Kiya & Matsumura.? A rather rapid decay of the peak 
vorticity values obtained by Cantwell & Coles seems primarily due to  the jittering 
effect inherent to their upstream triggering technique. As explained and emphasized 
by us (e.g. Hussain 1986; HH), such a triggering method can eliminate the initiation 
jitter but not the trajectory or evolutionary jitter which increases with increasing x. 
Data of Armstrong et al. show a lower (w,) ,  value in spite of their use of a local 
detection scheme. This can also be attributed mostly to  smearing inherent to their 
triggering method; their reference probe was located outside the wake region (at 
y = 3.2d) ,  thus unavoidably capturing footprints of passing structures whose centres 
are not expected .to bear a unique relationship with the footprint on the trigger 
signal. I n  addition, their detection probe was shifted by 0.5 d in the x-direction from 
the sampling probe, thus further contributing to the smearing. Herein lies what we 
consider to be the superior feature of our eduction scheme: i t  does not rely on any 
external trigger signal, but uses the measurement signal (i.e. vorticity a t  the 
structure centre) itself as the trigger signal. Our measurements are thus free from the 
initiation and evolutionary jitters as well as from the footprint ambiguity. Note that 
the peak vorticity value in the artificially excited wake studied by Armstrong et al., 
which is denoted by an open triangle in figure 3 ( a ) ,  is closer to ours and Kiya & 
Matsumura’s. This suggests that excitation can considerably reduce the evolutionary 
jitter of structures. 

The structure advection velocity (figure 3 b )  increases rapidly in the very near 
region, say up to xld = 6, and thereafter shows a more gradual increase. The average 
vortex spacing ratio (figure 3c), which is determined from the ensemble-averaged 
vorticity field and the advection velocity U,, also increases with increasing x. Note 
that the chain-link line in figure 3(c) represents the laminar wake data (Re, = 80 to  
140) of Matsui & Okude (see Matsui 1982). Particularly noteworthy is the fact that  
the most probable vortex spacing ratio is not significantly altered by the flow 
state - laminar or turbulent - and in both cases the ratio crosses the theoretical value 
of 0.281 for the (stable) Karman vortex street a t  around x/d = 20. The stability of 
the KArrnAn street has been studied theoretically by many ; some have taken into 
account the effect of finite core size on the stability (e.g. Kida 1982 ; Meiron, Saffman 
& Schatzman 1984). However, these theories assume doubly infinite vortex rows 
with back-to-fore symmetry and thus cannot account for the continuous increase of 
the vortex spacing ratio observed experimentally. It is clear that a more realistic 
predictive theory must take into consideration the streamwise evolution of the wake, 
as also pointed out by Jimenez (1987). 

3.3. Importance of the saddle region 

Various structure measures and the associated turbulence characteristics are 
discussed in HH. Here, we reproduce in figure 4 the contours of coherent strain rate 
(denoted by bold lines) and production of incoherent turbulence (broken lines) at 
x/d = 20 in order to illustrate the important role of the saddle region in the turbulence 
production mechanism. In  this figure, dotted lines denote the coherent structure 
boundaries, designated by the coherent vorticity contour level of ( w , ) / S ,  = 1 ; the 

t HH and Kiya & Matsumura used selective conditional-sampling methods. The number of 
finally accepted structures is 0.36fs(i.e. 36%) at xld = 10 in HH, and 0.43f,(i.e. 43Y0) at xld = 8 
in Kiya & Matsumura. Here, f, is the number of shed vortices on one side of the wake. 

13-2 
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FIQURE 4. Typical structure properties, focusing on the significance of the saddle region (a two- 
dimensional cut at  x/d = 20): _---, structure boundary ((wZ)/SM = 1.0); -; coherent strain rate 
((S)/S, = 2.0, 1.0); ----, coherent production ((P)/E120Qy = 0.008, 0.004). 

‘centres’ and the ‘saddles’ are marked as + and x respectively. Note that the 
contour shapes on the upper and lower side of the wake are not exactly the same ; this 
is because the eduction is triggered and aligned with respect to the structure centre 
a t  t = 0 (y < 0) and thus educed flow properties away from the trigger point suffer 
from unavoidable smearing. Large-scab structures produce the intense strain rate in 
the saddle region ; accordingly, the production of smaller-scale turbulence due to the 
large-scale structures occurs in this region (Hussain 1980). This can be attributed to 
the vortex stretching along the braid that connects successive spanwise vortices, as 
discussed by Cantwell & Coles (1983) and HH. Thus, the braid would not be a 
continuous two-dimensional sheet, but would consist of three-dimensional ‘ribs ’ 
characterized by longitudinal vorticity (Hussain 1984). Since streamwise streaky 
structures or ribs have been observed in the braids in several flow visualization 
studies of plane mixing layers, we expected that ribs exist in the wake as well. In this 
connection, we wish to re-emphasize a point made repeatedly by us regarding flow 
visualization : flow visualization can be grossly misleading and must be checked by 
quantitative data in unsteady and turbulent flows, where flow markers should be 
introduced locally, if possible. Flow markers are rapidly depleted from regions of 
intense vortex stretching and typically accumulated in regions of low vorticity 
interactions ; they thus can distract attention away from regions of dynamical 
interest . 

4. Organization of the spanwise structure 
4.1. Two-rake measurements 

Observations of instantaneous 3, maps (figure 2) led us to believe that the spanwise 
rolls should be subjected to significant distortion. Then, to what extent does an 
individual roll preserve its spanwise uniformity, and how can we determine 
quantitatively the extent of spanwise homogeneity, using a limited number of 
probes ? We used two rakes with probe arrangement S2 (figure 1) and measured the 
spanwise vorticity simultaneously in two (2, 9)-planes. Since each rake had only four 
X-wire probes (giving vortieity values a t  three midpoints), rather poor resolution was 
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FIGURE 5.  Streamwise variation of the wake half-width b and the most probable location 
y, of structure centres. 

inevitable. To improve the spatial resolution, the central location of each rake was 
shifted from the wake centreplane so that the rake captured only structures passing 
on one side of the wake. The transverse distance between adjacent probes was 
adjusted to 20 mm (or Asld = 0.74) in order to cover the average transverse extent 
of typical large-scale structures (HH). For reference in the following discussion, the 
wake half-width b and the average location of structure centre yc as a function of x 
are shown in figure 5. Note that the y,-location is always much closer to the wake 
centreplane than b ; see HH for discussion. 

Two examples of simultaneous (3, contours are shown in figure 6,  for the spanwise 
separation Az = 3d which corresponds to 2.5b at x/d = 20 and 1.7b at x l d  = 40 
respectively. The transverse location of each rake centre is a t  y x 0.5b. For clarity, 
the figure includes voriticity contours with one sign only. At xld = 20 (figure 6a)  we 
find one-to-one correspondence between 3, concentrations in the two planes ; this 
indicates that the rolls are generally continuous over a z-range of much more than 
3d. However, the corresponding contours show considerable differences between the 
two planes in size, strength, and transverse and/or timewise location. Thus, even 
though they are continuous, individual rolls appear highly distorted, and the 
w, component of such rolls depends on the local inclination to the (5, y)-plane. At 
x l d  = 40 (figure 6 b) the correspondence between the two planes is much weaker than 
at x l d  = 20; quite frequently, structures appear in only one of the two planes. This 
behaviour may result from two causes: (1) continuous rolls escape either rake 
because of the limited y-range covered by the rake, and (2) ‘discontinuous’ 
structures actually occur due to significant tilting and diffusion (see $5.2) .  

Recalling the fact that these contour plots have been obtained by filtering out 
high-frequency vorticity fluctuations and by retaining only largescale vorticity 
fields, there should be little doubt that the wake structure is fairly three-dimensional 
even at  the largest scale. 

4.2. Spatial correlation of spanwise vorticity 
In order to quantify the three-dimensionality, the spanwise correlation Gz GZ(Az) of 
(smoothed) spanwise vorticities was measured using the same probe arrangements as 
used for figure 6. Each correlation was calculated between vorticity signals obtained 
at the same y-location but in two different (2, y) planes. Results are shown in figure 
7 (a) ; data at two y-locations are included for each of the two x-stations, and the 
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FIGURE 6. Instantaneous 3, maps measured simultaneously at  two (x, y)-planes (Az = 3d) ; 
(a)x /d  = 20, (a) x/d = 40; contour levels: OJS, = -4, - 2 .  

correlation value is normalized by the r.m.s. values of 6, and &,(Ax). Despite high- 
frequency (i.e. smaller scale) fluctuations being smoothed out, the correlation 
coefficient R decreases rapidly with increasing Az. For both x-stations, the dotted- 
lined correlation curve obtained a t  a y-location close to the half-width location b,  is 
lower than the solid curve for y x 0.5b. This is to be expected because the most 
probable y-location for the centre of rolls is y % 0.5b (see figure 5 )  ; thus the (long- 
time) correlation should be highest along this y-location. The relatively small 
difference between data for y x b and y % 0.5b a t  x/d = 40, compared with the 
difference at  x/d = 20, can be attributed to increased transverse wandering (i.e. 
increased broadening of the transverse probability distribution) of structure centres 
with increasing x (see figure 3 in HH). 

In figure 7 ( b ) ,  the data a t  y x 0.5b are replotted using a semilogarithmic scale. The 
correlation coefficient shows a nearly exponential decay with the spanwise separation 
for Az > d. One can (somewhat arbitrarily) estimate the spanwise scale of structures 
to be the separation at which the correlation coefficient drops by e-’. The spanwise 
scales thus determined from figure 7 ( b )  are Az = l.Sd(or 1.5b) a t  x/d = 20 and 
Az = 0.9d (or 0.56) a t  x/d = 40. 

4.3. Ensemble average of spanwise vorticity 

The spanwise organization of the rolls was investigated further by taking the 
ensemble average of w, in planes parallel to (but separated by Az from) a reference 
(x, y)-plane. Again, the midpoint of each rake was located a t  y x 0.5b. 

The detection criteria adopted here for identifying structures a t  the reference 
plane were relatively less stringent than those used in HH. Specifically, the steps 
were: ( I )  to detect structures that are centred a t  the mid-point yc of the rake by 
requiring &,(ye) to be transversely maximum, i.e. simultaneously higher than 
&,(ye +As) and &,(yc - As) ; (2) to specify the structure strength and the streamwise 
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FIGURE 7 .  Spanwise correlation coefficient R of G i  (a) linear scale, ( b )  semi-logarithmic scale. 
R = l j z G z ( A ~ ) / { G ~ G ~ ( A ~ ) $ .  

structure size by requiring C;,(y,) to be higher than a threshold uth for time duration 
AT; ( 3 )  to determine the timewise (i.e. streamwise) structure centre location t, as the 
central time when i&(y,) is above the threshold (i.e. as the midpoint of the duration 
AT) ; and (4) to specify the transverse structure size by requiring that G7,(y, As, t,) 
have the same sign as that of the centre (yc , tJ .  After some iterative tests, the 
threshold value and the duration were selected as uth = 2.55, and AT = 3.2 ms = 
0.17IT,(U,AT x 22 mm); here, T, is the mean period of vortex shedding on one side of 
the cylinder. 

Following this detection algorithm, we can identify individual structures whose 
centres are located a t  (y,, tci); t,, is the location in time of the centre of the ith 
structure. Large-scale structures are accepted only when these criteria are satisfied 
simultaneously so that weaker, smaller or transversely shifted structures are not 
included as ‘reference structures’ (i.e, the structures detected in the reference (2, y)- 
plane). The iterative alignment of structure centres (followed by HH) is not done in 
the present analysis because we are not concerned here with detailed incoherent and 
coherent structure properties. With the reference structure centre as a phase (i.e. 
time) reference, a signal segment, around t,,, of unsmoothed vorticity in a plane 
separated by Az from the reference plane is aligned with respect to the corresponding 
reference structure centre (y,, t,), and then ensemble averaged. 

The results are shown in figure 8(a )  for z/d = 20 and figure 8 ( b )  for x/d = 40. The 
ensemble average was calculated over about 100 and 150 realizations for x/d = 20 
and 40 respectively. Contour levels are non-dimensionalized by S, ; broken lines 
denote clockwise vorticity associated with the reference structure and solid lines 
(clockwise vorticity) show structures shed from the opposite side of the cylinder. In 
each figure, the lowest contour indicates the reference structure. The peak of the 
educed vorticity decreases with increasing Az. Since the reference structure is educed 
by minimizing spatial jitter and discarding weaker or smaller structures, these data 
should reflect a substantial lack of two-dimensionality of rolls. The peak value of 
(w,)  decreases down to one-half of the reference value at a spanwise separation of 
Az = ( 3 4 ) d  at x/d = 20 and of dz = (1-1.5)d at x/d = 40; with respect to the local 
half-width b, these values are roughly 3b and 0.7b respectively, which are somcwhat 
larger than those determined from the spatial correlation (figure 7) .  As the detection 
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FIGURE 8. Ensemble-averaged 6jZ contours for various spanwise separations : (a) x/d = 20, 
( b )  x/d = 40. 

scheme has selectively captured 'typical ' large-scale structures only, the number of 
accepted structures was 0.35fs and 0.23fs (i.e. 35% and 23% of initially shed 
structures) a t  x/d = 20 and 40 respectively. The mean spanwise scale of all rolls, 
which include relatively smaller or weaker structures discarded in the eduction 
process, should be actually smaller than that inferred from figure 8. This may be the 
reason why the spanwise scale obtained by the spatial correlation is smaller than that 
obtained from the ensemble averaging. 

4.4. Spanwise scale of rolls 
Summarizing the results of spanwise vorticity correlations and conditional-averaging 
analyses, we conclude that the typical spanwise scale of the primary vortices is 
indeed quite small. We recall that  by intentionally imposing a spanwise variation in 
the trailing edge of a splitter plate, Breidenthal (1980) observed that the wake had 
much longer 'memory' of the spanwise perturbation (than a mixing layer), even 
though the side view, i.e. (x, y)-plane (of this three-dimensional flow) appeared quite 
similar to  that of a two-dimensional wake. Thus, any measurement or visualization 
simply done in particular (x, y)-planes could overlook the real three-dimensional 
structure even in the near wake. 

Unfortunately, little attention has been paid to the spanwise scale of the large- 
scale structures in the cylinder wake. Here, we briefly compare our results with those 
reported by Browand & Troutt (1985), who measured the spanwise correlation of 
longitudinal velocity fluctuations of two-stream mixing layers with the aid of a rake 
of 12 single hot-wires and estimated the spanwise scale as a function of the speed 
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ratio AU/U(AU and 0 are difference and average of the two stream velocities). The 
extrapolation of their data to the wake case (i.e. the speed ratio of zero) results in an 
asymptotic spanwise scale - defined by a 40% correlation point - somewhat larger 
than 46,, 6, being the local vorticity thickness (see their figure 9). For our data, the 
corresponding vorticity thickness (evaluated by 8, = U,/(&i/ay),,,, where U, is the 
mean velocity defect on the wake centreplane) is 1.95d at xld = 20 and 3.ld at 
x ld  = 40. The spanwise extent of rolls determined by the correlation (figure 7 b )  
is roughly 0.956” and 0.38, for x /d  = 20 and 40 respectively. These values are 
significantly smaller than those corresponding to the self-preserving region of a flat- 
plate wake. Although a direct comparison of the present result with the one 
extrapolated from Browand & Troutt’s data in mixing layers is not very rigorous, 
there is no reason to believe that structures in the far-field wake of a flat plate are 
much more two-dimensional than those in the intermediate region of a cylinder 
wake. Contrary to the observations of Browand & Troutt and others (e.g. Wygnanski 
et al. 1979), a three-dimensional direct numerical simulation (Metcalfe et al. 1 9 8 7 ~ )  
shows that the spanwise rolls in a fully turbulent mixing layer are intensely three- 
dimensional (see also Hussain 1986). Moreover, Browand & Troutt’s data show an 
increase in the spanwise coherence with decreasing speed ratio ; this trend appears 
counter to the fact that the mixing layer is relatively more stable to three- 
dimensional disturbances than the wake (Breidenthal 1980 ; Robinson & Saffman 
1982). 

Note that observations based on the velocity fluctuations induced by organized 
structures are very likely to capture not the ‘substance’ but the ‘shadow’ of the 
underlying structures. We suggest therefore that the apparent discrepancies 
mentioned above should be resolved through quantitative studies based on coherent 
vorticity measurements. 

5. Transverse vorticity concentrations 
5.1. Instantaneous transverse vorticity jield 

As a next step in exploring the three-dimensional nature of the wake, the transverse 
vorticity component w, was measured by using the rake T1. The rake was placed on 
one side (i.e. y > 0) of the wake. The distance between adjacent probes was 15mm 
(i.e. As/& = 0.56), the total distance spanned by the rake being about 4d. This probe 
spacing was chosen as a compromise between the requirements of covering a larger 
region of the flow and having acceptable spatial resolution. 

Some examples of (smoothed) instantaneous 3, maps are shown in figures 9 and 10 
for xld = 20 and 40. Each figure includes two maps measured at  different transverse 
locations (i.e. (2 ,  2)-plane); one is close to the half-width location (y = b )  and the 
other is near the average location of primary spanwise structure centres (y x 0.56). 
Contour levels are again non-dimensionalized by S, so that the strength of GU 
concentrations can be directly compared with those of 9, shown in figure 2. Clockwise 
(negative) and counterclockwise (positive) vorticity levels are denoted by broken and 
solid lines respectively. Note that the contour levels drawn are higher for x/d = 40 
than for x /d  = 20, while the absolute values are lower at  x /d  = 40 because S ,  there is 
about half of that at  xld = 20. The signs of circulations and the mean period T, of 
vortex shedding are indicated in the upper portion of figure 9 (a) .  The abscissa scale 
corresponds to about one quarter of the ordinate (i.e. spanwise) scale, as in figure 2. 

It is readily seen from these figures that there are large numbers of 3, 
concentrations which are indicative of three-dimensionality of the coherent 
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FIGURE 9. Instantaneous 3, maps at x/d = 20; (a) y/b = 0.94, ( b )  y/b = 0.47; contour levels: 
G,/S, = +3,  1.5. Dotted lines indicate paired 63" concentrations with opposite circulations. The 
direction of circulation and the mean vortex shedding period are depicted in the upper portion of 
figure (a) .  
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FIQTJRE 10. Instantaneous 3, maps at x/d = 40; (a) y / b  = 0.82, (b )  y / b  = 0.41; contour levels: 
3JS, = f 4, f 2. For dotted lines and the direction of circulation, we figure 9. 

structures. Furthermore, many 3, concentrations have strengths comparable with 
those of 3, concentrations (see figure 2). Such strong concentrations of transverse 
vorticity have not been recognized before. Superficially, the distribution of Gv 
patches appears quite irregular, and it seems difficult to  find any specific spatial 
configuration. However, a closer inspection reveals that  3, concentrations tend to 
have paired patterns with opposite-signed circulations, indicative of counter- 
rotating vortex pairs. Such patterns are seen in areas enclosed by dotted lines in 
figures 9 and 10. This feature is not surprising if we consider the kinking or warping 
of rolls, because the deformation of a spanwise vortex tube (or filament) into a 
horseshoe or hairpin vortex is an obvious consequence of shear and is indeed a 
common feature in any plane shear flow (e.g. Pierrehumbert & Widnall 1982). 
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Three-dimensional instability may be expected to produce periodic spanwise 
undulations of rolls. However, no clear evidence of spanwise periodicity - which 
should appear as positive and negative vorticity concentrations aligned periodically 
in the z-direction - is apparent in the 3, maps. Furthermore, we cannot see any clear 
periodic appearance of 3, concentrations in time (i.e. streamwise direction) either. 
Note that these arguments implicitly assume a global two-dimensionality of rolls ; 
that is, undulating or not, they are presumed to remain aligned in the z-direction. 
However, because the actual flow field is intensely three-dimensional (as inferred 
from 3, maps themselves and also from the results discussed in the previous 
sections), there is no reason for the 3, concentrations to be observed a t  the same 
time. Rather, it is more probable that the rolls are considerably distorted not only 
in the spanwise direction but also in the streamwise direction. Keeping this in mind, 
we can recognise some occasions (within short time segments) when d, contours 
change their signs alternately in the z-direction : for examples, a t  t x 70 ms in figure 
9(a ) ,  at t x 120, 210 and 225 ms in figure 9(b ) ,  a t  t z 280 ms in figure lO(a), and a t  
t x 200 ms in figure lO(6) .  However, these events are relatively infrequent. In 
addition, we cannot easily identify whether GU concentrations are manifestations of 
intrinsic three-dimensionality of rolls or occurrence of ribs (discussed in 96.1). 

The irregular instantaneous vorticity maps pose significant difficulties in clarifying 
detailed topological features of structures from relatively sparse quantitative data. 
But far more limiting, in our view, are the conventional visualization studies. 

5.2. Ensemble-averaged transverse vorticity 
Next, using the instantaneous 3, maps, we tried to educe a plane cut of transverse 
structures. That is, by identifying the 2, peaks of a specified sign, we aligned the 
associated realizations with respect to those peaks and obtained ensemble averages 
of wy. Essentially the same procedure used in the previous section for w, data was 
followed. The detection criterion was to specify the structure strength and streamwise 
size by requiring that 3, a t  the rake centre be higher than a given threshold uth for 
a certain duration (in this case, 3.7ms or 0.2%). This streamwise scale is roughly 
equal to half of the typical roll size determined in HH. After examining the 
instantaneous maps, the threshold level uth was chosen as 223, and 2.W, for 
xld = 20 and 40 respectively. 

Ensemble averages of w, thus obtained over more than 200 realizations are shown 
in figures ll(a-c) and 12 (a-c). Figures(a,b) are obtained from the detection of 
positive d, concentrations, and the figure ( c )  from the detection of negative 3, 
concentrations. Each figure indicates opposite-signed vorticity concentrations 
located preferentially a t  one side of the detected structure in such a manner that a 
larger negative (w , )  contour appears in the negative z-range when triggered by the 
positive o?,, (a and b ) ,  and vice versa when triggered by the negative 8,, (c ) .  

The accepted number of 3, concentrations is (0.174.22)fs a t  x/d = 20 and 
(0.134.17)fs a t  xld = 40 (the number decreases slightly with increasing y within 
the y-range covered here), while the strength of the 3, concentration is larger a t  
xld = 40. Considering that the threshold level used was relatively higher at x/d = 40, 
i t  may be said that the number of ‘typical’ (i.e. accepted) transverse structures 
is not significantly different between the two x-stations. Recall that  the number of 
rolls detected at the most probable y-location of their centres decreases from 0.35fs 
at x/d = 20 to 0.23fs at x/d = 40 (see $4.3; the number decreases by a factor of two 
in HH, where stricter criteria were used for eduction). One can conclude from the 
above observation that the decrease in size of ‘ typical ’ rolls with increasing x is not 
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FIGURE 1 1 .  Ensemble-averaged 3, contours at x/d = 20; (a) y/b = 0.94, (b) y/b = 0.47, 
(c) y/b = 0.47. Note that stronger non-reference structure appears preferentially on one side of the 
reference structure. 

FIGURE 12. Ensemble-averaged 3, contours at x/d = 40; (a) y/b = 1.22, (b) y/b = 0.82, 
(c) y/b = 0.82. Note that (3J patterns are essentially the same as in figure 1 1 .  

due so much to their breakdown into smaller structures but more to their three- 
dimensional deformations, including spanwise variation of their cross-section. 

Once again, there is no clear indication, in figures 11 and 12, of spanwise 
periodicity of transverse structures ; if there were, opposite-signed vorticities should 
be educed on both sides of the reference structure with equal probability. The 
direction of circulation suggests that the formation of a transverse vortex pair (i.e. 
two legs of the same structure) might be initiated more frequently by outward 
kinking (see figure 13a). If the inward kinking (figure 13b) is predominant, the 
positive (w , )  contour should appear preferentially in the upper side (with respect to 
the negative (w,)  contour) in figures 11 (a ,  b )  and 12 (a, b ) .  The educed pattern shows 
just the opposite, indicating the outward kinking occurs more frequently. Note that 
in the instantaneous 3, maps (figures 9 and lo), the most clearly identifiable pairs of 
13, (denoted by dotted-line envelops) correspond to figure 13 (a) .  

In figures 11 and 12, the much weaker contour levels of the educed (non-reference) 
structure (away from z = 0) suggest that vortex pairs do not occur with high 
probability. However, assuming that a pair denotes the two legs of a horseshoe-type 
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FIGURE 13. Conceptual pictures of deformation of rolls; (a) outward kinking, (b) inward 
kinking. Signs (+ and - )  indicate those of the 6,-component. 

39 1 

FIGURE 14. Conceptual illustrations of possible configurations of distorted horseshoe-like vortices ; 
(a) unequal spanwise spacing, (b) asymmetry in the z-direction, (c) unequal strength, (d )  diffusion 
of one leg, (e) relative shift in the 2-direction, (f) significant diffusion. 

vortex, the relative jitter between the two legs can dilute the ensemble-averaged 
vorticity level. There are three possibilities : the two legs (1) have equal strength but 
are asymmetric or have large variations in spanwise spacing even if symmetric; (2) 
have unequal strength; or (3) are relatively shifted in time. These scenarios are 
illustrated in figure 14 (b-e).  We feel that all of them occur frequently in a turbulent 
environment and the occurrence of horseshoe-like vortices with symmetric legs is not 
likely to be frequent. Thus, a lack of symmetry-for example, one leg being 
considerably more flared out and distorted than the other leg (destroying symmetry 
both in geometry and in vorticity level) - should not be surprising and may indeed 
be prevalent. This seems to be a primary reason that 3, concentrations do not always 
occur as a clear pair in the instantaneous maps (figures 9 and 10). One must not forget 
that  the schematic of a hairpin vortex in a turbulent flow, though often drawn 
symmetrically, represents merely a simplified, conceptual picture. Worse yet, the 
legs of a hairpin-like vortex in a turbulent flow may be so diffuse (say, figure 14f) 
that they may escape detection in probe measurement and flow visualization. In  fact, 
isolated vortices have been observed in direct numerical simulations of wall bounded 
and homogeneous shear flows (Moin & Kim 1985; Rogers & Moin 1987). 
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(the rake arrangement T2). 
FIGURE 15. Ensemble averages of wy at x/d =20 for various combinations of two rakes 

5.3. Transverse organization of structures 

Is there any evidence that transverse structures occur in the intermediate wake ? For 
this purpose, using two transversely separated rakes (probe arrangement T2), we 
detected 3, concentrations in a reference plane and obtained the ensemble average 
of w, simultaneously measured in the other plane. The reference rake was placed in 
one half (y > 0) of the wake, while the other rake was positioned sometimes on the 
same side as the reference rake and sometimes on the other side. For these 
experiments, the distance between adjacent probes in either rake was 25 mm (or 
Asld = 0.93) ; a rather large spanwise separation was used so that transverse 
structures inclined even in the (y, 2)-plane could be captured simultaneously by the 
two rakes. The detection was based only on positive vorticity concentrations at the 
midpoint of the reference rake. The eduetion procedure is essentially the same as used 
for the (w , )  measurement, by the probe arrangement S2 (see $4.3). That is, when the 
3, in the reference plane exceeds a threshold level wth, the Gy signal in the other plane 
is aligned with respect to the corresponding reference structure centre and ensemble 
averaged. The threshold level here is 1.7SM and 2.1SM for xld = 20 and 40 
respectively. 

Figures 15 (a-d) and 16 (a-d) show examples of ensemble averages of wy at  
xld = 20 and 40, for various y-locations and distances between the two rakes; the 
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FIQURE 16. Ensemble averages of w, at x/d = 40 for various combinations of t w o  rakes 
(the rake arrangement T2). 

number of realizations is about 100. The reference rake position is denoted by yr and 
the other rake position by y. Again, clockwise (negative) and counterclockwise 
(positive) vorticities are denoted by broken and solid lines respectively. Note that 
dotted lines are used wherever clear (w,)-contours were not apparent owing to 
sparse data points. At either x-station, closed (positive) contours associated with the 
6, concentrations a t  yr are obtained when both rakes are placed within the 
transverse range of y 2 0. I n  these cases, the (o,)-peak is located in T < 0 and 
slightly displaced to the negative z-range when y > yr (ix. figures 15a, b and 16a), 
and is located in T > 0 and z > 0 when y < yr (i.e. figures 15c and 16b, c ) .  Note that 
no clear coherence is observed when yr > 0 and y < 0 (figures 15d and 16d). This 
implies that column-like transverse structures extending across the wake centre- 
plane, similar to the Grant model for the far wake, do not occur in the 
intermediate region of the wake (for further discussion, see $6.3) .  

In  figures 15 ( c ,  d )  and 16 ( d ) ,  there exist other positive contours located at around 
l Y , ~ / d  = + 2 ;  they are not connected with the structure a t  yr. Since this timewise 
position corresponds nearly to 0.5q  (as denoted a t  the top of figures 15a and 16a), 
these positive contours may indicate transverse structures in the lower side of the 
wake. At xld = 20 (figure 15c, d ) ,  these (w,> contours are displaced in the z-direction 
away from the educed structure (centred at  z = 0 and T = 0). For this situation to 
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occur, a probable arrangement of the coherent structures is that  of contorted rolls on 
two sides of the wake being staggered in the z-direction. On the other hand, contours 
around T = f0.5T, a t  x/d = 40 (figure 16d) are located at z z 0, suggesting that 
contorted rolls on the two sides are symmetrically aligned in x. Thus, it appears that 
both configurations, staggered and aligned, would be occurring in the wake, as 
suggested by HH (see figure l l d ,  e of HH). Because of the limited data, however, it 
is hard to conclude which configuration is more typical, or whether the dominant 
configuration depends on x-station. 
As mentioned earlier, the (w,)-peak of the educed structure in y 2 0 is always 

located away from T = 0 and is slightly displaced from z = 0. This suggests that the 
transverse structures are inclined to both the (y, 2)-plane and (5, y)-plane. Since the 
inclination in the (y, 2)-plane was small and could not be evaluated owing to sparse 
data points in z ,  we tried to determine the inclination in the (2, y)-plane only. Figure 
17 (a, b )  shows (w, )  variations as a function of time on the midlocation of each rake ; 
a t  this location the ( w , )  value is always the highest of the values a t  the three discrete 
z-positions. The (w,) values are normalized by the peak value at the corresponding 
yr (i.e. (w , )  a t  z = 0 and 7 = 0) because (ow) depends somewhat on its transverse 
location, though the same threshold level is used for all yr a t  the same z. The traces 
a t  the reference plane are shown only for yr = 15 mm a t  xld = 20 and yr = 30 mm a t  
xld = 40. 

We notice from figure 17 that the transverse structure is inclined to the x- 
coordinate at an acute angle, in the direction of the mean shear. Small bumps located 
around T = k O.FiT, in y < 0 reflect the contorted rolls shed from the lower side of the 
cylinder, as discussed earlier. 

In order to evaluate the inclination angle of the transverse structure in y 2 0, we 
determined the time difference between the peaks of each pair (y, yr), and successively 
added the individual time differences to get the total time shift from a fixed y- 
location (i.e. y = 30 mm). Results are shown in figure 18, with the time shift 7 

multiplied by V,. Data from the two x-stations collapse roughly onto a single curve. 
If Taylor’s hypothesis (based on a constant advection velocity U,) is adopted, the 
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FIGURE 19. Sketch showing a possible mechanism for horseshoe-like vortices to maintain a n  
angle of inclination. 

oblique angle from the y-axis is about 30°, except in the vicinity of the wake 
centreplane. This result suggests that the typical transverse structure has a nearly 
constant inclination angle irrespective of x-station. How then can structures 
maintain a constant angle under the persistent effect of the mean strain ? A possible 
explanation may be that while a horseshoe-like vortex tends to be pulled down by 
the mean strain, the naturally induced velocities of paired legs make the vortex stand 
up (see figure 19). Since the distance between the two legs decreases its the ‘tip’ of 
the horseshoe vortex is approached, the induced velocity is relatively larger in the 
outer region, as shown by bold arrows in figure 19. Thus the horseshoe-like vortex 
might maintain a nearly fixed angle owing to two opposing effects : the self-induction 
of the vortex and the tilting due to the mean strain. Note that contrary to the case 
of inclined hairpin vortices in the boundary layer (Head & Bandyopadhyay 1981), 
the mean strain decreases near the ‘feet’ of the vortex in the wake. This might 
explain the smaller inclination angle near the centreplane in figure 18. 

One may question the use of V, to infer the spatial orientation of a transverse 
structure. If the local mean velocity is used instead, the inclination angle increases 
slightly (as shown by a broken line in figure 18) ; yet the angle is still much less than 
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FIGURE 20. Illustration of the detection of ribs using C- and 6,-signals. For simplicity, rollH are 
drawn as a two-dimensional event. 

45", which is the principal axis of the mean strain-rate tensor. For the far-field 
structures, the angle of 45" has been frequently mentioned as a typical inclination 
angle of the roller eddies (e.g. Savill 1983; Mumford 1983) without any definite 
quantitative basis, while LaRue & Libby (1974) and Bonnet, Delville & Garem 
(1986) obtained an inclination angle of organized motion with respect to the y-axis 
of about 30°, in apparent agreement with our observations. Thus, it seems possible 
to conclude that the most probable inclination angle of the transverse structure in 
the wake is about 30". However, since the earlier measurements used the cross- 
covariance of velocity, intermittency or temperature signals, it is not clear whether 
those results convey directly the features of large-scale transverse structures. Note 
also that the present result itself has been based on vorticity measurements in 
essentially only two (x, 2)-planes. Thus, in order to resolve this question of the 
inclination angle, it would be necessary to use a more sophisticated experimental 
technique or (perhaps) three-dimensional numerical simulation. 

6. Further considerations 
6.1, Longitudinal substructures : ribs 

The present data show that the two-dimensionality of shed vortices disappears much 
sooner than our intuitive impression suggests. One of the factors producing three- 
dimensionality seems to be the formation of 'ribs', as mentioned in $1. Since the ribs 
are characterized primarily by streamwise vorticity , the present measurement 
cannot capture such longitudinal structures directly. However, because the ribs, 
being inclined in the (x, y)-plane would intersect the (x, 2)-plane between successive 
rolls, their signatures should appear in this plane as instantaneous L& concentrations, 
A conceptual sketch showing two rolls and a rib connecting them is shown in figure 
20. Mote that, for simplicity, the figure includes only one side of the wake, and the 
rolls are drawn as two-dimensional structures. Based on this viewpoint we tried to 
search for rib signatures. A question then arose as to how to discriminate 2, 
concentrations due to ribs from those due to distorted rolls, and how to recognize 
the two different coherent structures without having to simultaneously measure 
spanwise and normal vorticities. 

Let us examine the velocity field associated with the passage of a roll. As a vortex 
roll passes, the instantaneous streamwise velocity u(y) outside the vortex centre 
y,(y > y,) must be higher than the vortex celerity U,. According to HH the maximum 
of the ensemble-averaged u-component at xld = 20 is about 1.3q at y = 1.9yC, which 
is roughly the average location of the outer edge of the core of a roll. On the other 
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hand, the o,-component of ribs is likely to be largest at the (x,z)-plane passing 
through the axes of successive rolls, i.e. at y = yc. Therefore, by putting the rake T1 
between these two particular y-locations (i.e. a t  yc < y < l.9yc; see figure 20), one can 
expect to find some signature of ribs in the instantaneous d,-maps by simultaneously 
examining the corresponding S-maps. 

Figure 21 (u-f) shows three sets of simultaneous records of GU and 6 at  xld = 20. 
Data are taken a t  y = 0.94b (or 1.6,5y,), which location satisfies the requirement 
specified above. The spanwise extent covered by the rake is 3.4b. In  each pair of 
plots, the upper trace ( a , c , e )  is 6, and the lower (b ,  d , f )  is the corresponding S. 
Contour levels of the latter are given by the deviation from U, in the non-dimensional 
form (S-Q) /& ;  positive and negative contours are denoted by solid and broken 
lines respectively. The abscissa scale in these figures corresponds to about one third 
of the ordinate (spanwise) scale. 

Comparing 6,- and S-maps, when it-contours are elongated in the x-direction 
(beyond the 3 : 1 aspect ratio because of time compression in the figures), hardly any 
significant transverse vorticity is observed ; a t  these instants, the (locally) two- 
dimensional rolls presumably advect under the rake. Such cases are seen at  t x 45, 
130,155 and 175 ms in figure 21 (a,  b ) ,  a t  t GZ 10,120,170 and 210 ms in figure 21 (c, d ) ,  
and a t  t x 95, 115 and 170 ms in figure 21 ( e , f ) .  Considering these footprints, the 
timewise locations of rolls can be roughly estimated by assuming a constant duration 
between consecutive rolls, equal to the mean period 7; of vortex shedding. The 
qualitatively inferred locations are denoted by vertical arrows on the tops of ii-maps. 

When there are paired 6,-concentrations with opposite circulations located near 
the arrow-marked positions (area surrounded by dotted lines), lower-speed velocity 
contours (dot-filled contours) appear in the regions between those 3, pairs. This is 
consistent with the fact that paired transverse structures (legs of horseshoe-like 
vortices) transport lower-momentum fluid from the inner wake toward the outer 
region, or the vortex induces a velocity in the upstream direction, i.e. opposite to the 
main flow. We believe therefore that this behaviour results directly from the rolls 
distorted in such a form as in figure 13(a). 

On the other hand, if &,,-concentrations occur a t  phases between consecutive S- 
contours which are elongated in the z-direction, they might be regarded as ribs. Now, 
examining figure 21 (a ,  c ,  e ) ,  we can see several &,-concentrations (hatched contours) 
located between the elongated it-contours or located near the distorted rolls (enclosed 
by dotted lines). Thus, it seems plausible that these hatched contours indicate the 
presence of ribs. Note that some of them also have a counter-rotating paired pattern. 

Caution must be made here, however, that many of the hatched contours are 
located near the middle of the successive arrows or even closer to the downstream 
side of the elongated S-contours. This feature would appear to  be counter to our 
initial working assumption, in that the rib signatures should be observed mostly in 
the region near the upstream side of the elongated S-contours. A possible explanation 
for this is that the &,,-concentrations located immediately downstream of a roll depict 
the parts of ribs wrapping around a roll and intruding into its downstream side at  
which the &,-component of ribs can be larger than that in the middle between the 
successive rolls (see figure 20). However, this is no more than speculation because a 
three-dimensional numerical simulation by Metcalfe et ul. (1987 b)  shows that the ribs 
in a mixing layer need not occur as clear pairs nor completely bridge over consecutive 
rolls. This is not surprising because vorticity in the braid region is not necessarily 
totally aligned with the diverging separatrices ; as the rolls are approached, vortex 
lines would flare out to wrap around rolls. 



-2 

f o  
2 

-2  

z 
d o  

2 



Three-dimensional structures in a plane turbulent wake 399 

Therefore, it is hard to draw very definite conclusions from the limited information 
provided by our data. In  particular, when higher-velocity contours (and thus rolls) 
are significantly contorted or even missing, there is no way to distinguish ribs from 
rolls. Pending more detailed data in a wake, we suggest that, at least, the hatched 
3, contours are manifestations of ribs. If this is really the case, the strength and size 
of ribs are not drastically different from those of contorted rolls. 

The relatively large scale of longitudinal structure was found by Jimenez et al. 
(1985) in image-enhanced visualization pictures of a plane mixing layer. To date, no 
quantitative measurements of longitudinal vorticity have been reported in free shear 
flows, but observations that the cavitation inception in separated mixing layers in 
water occurs first in streamwise streaky regions (Katz & O’Hern 1986; A. Acosta 
1987, private communication) suggest the presence of fairly intense longitudinal 
vorticity which produces localized low-pressure regions in those cores. Therefore, it 
may not be unrealistic to regard the &,-concentrations of hatched contours in figure 
21 (a ,  c ,  e )  as the signatures of ribs. 

6.2.  Some other aspects of ribs 
In this subsection, we add further discussion concerning the longitudinal sub- 
structures. 

Lasheras et al. (1986) found in a low-Reynolds-number mixing layer that 
concentrated streamwise vorticity was always initiated in the braid by the unstable 
response of spanwise vortex lines to small three-dimensional perturbations, and 
suggested that such instability would continue to propagate the three-dimensionality 
sideways in a manner similar to the ‘translative instability’ proposed by 
Pierrehumbert & Widnall (1982). A somewhat similar observation in the very near 
wake of a circular cylinder was reported by Wei & Smith (1986), who showed that 
a near-wake free shear instability produced secondary vortices which then evolved 
into cellular structures. A rough estimation from their pictures (their figures 8 and 
9) of the spanwise distance between paired legs of the cellular structure yields 
0.4d-0.6d a t  Re, = 3570 and 4530. Meanwhile, the distance between paired 6, 
patches (estimated from the hatched contours in figure 21a, c ,  e )  is roughly ld-2d. In 
addition, Wei & Smith’s result (their figure 11) shows that the scale of the cellular 
structures decreases with increasing Reynolds number. Thus, both the scale and span- 
wise separation of the cellular structures corresponding to our case (Re ,  = 1.3 x lo4), 
if they occur, should be much smaller than those of the &,-patches in figure 
21. This comparison suggests that the secondary vortices observed by Wei & Smith 
in the vicinity of the cylinder could not be directly related to apparent substructures 
recognized by the present measurement. 

As such, it is unclear whether earlier studies which focus on either transition region 
or low-Reynolds-number case, are relevant to fully turbulent flows. In fact, Wei & 
Smith observed that the cellular structure of secondary vortices was obscured in 
high-Reynolds-number cases. Our conjecture is that the vortex stretching in the 
braid plays a key role in generating ribs, as argued by Corcos 6 Lin (1984), Hussain 
(1984) and Lasheras et al. (1986); that is, any three-dimensional vorticity 
perturbation in the braids would be stretched by the intense strain produced by the 

FIQURE 21. Three sets of simultaneously measured, instantaneous Gw- and C-maps at x/d = 20; 
contour levels of (a, c, e ) ,  GJ5, = f 3 ,  f1.5; contour levels of (b ,  d, f ) ,  (G-V,) /V,  = f0.125, 
f 0.076. 
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nominally spanwise rolls (see figure 4) and would tend to be organized and aligned 
in the direction of the principal axis of strain (' the Corcos mechanism '). The ribs thus 
formed should be subjected to continual stretching along the braid (Lin & Corcos 
1984; Neu 1984), and the induction of the ribs may, in turn, distort the rolls 
primarily in the spanwise direction (Hussain 1984; HH). 

Another relevant result recently obtained by Kiya & Matsumura (1988) is that the 
most significant contribution to the incoherent Reynolds shearing stress in the saddle 
region (in the near wake of a normal plate) comes from fluctuations with frequencies 
around one-half of the vortex shedding frequency. In order to explain such a 
dominant role of the subharmonic component, they propose that ribs in consecutive 
saddle regions have a staggered arrangement. Let us refer again to figure 21 (a,  c ,  e )  
and examine the hatched &,-concentrations in the timewise direction. We can see 
some occasions of vorticity patches at a given z being of alternating signs in t ;  typical 
examples are three successive pairs of vorticity patches between t x 30 and 70 ms in 
figure 21 (a )  and two successive ones between t x 90 and 110 ms in figure 21 ( c ) .  These 
cases correspond to the staggered arrangement of ribs. On the other hand, there is 
no clear example that shows the streamwise alignment of ;,-patches. We might 
therefore conclude that the dominant streamwise arrangement of ribs is a staggered 
one, However, this is a very tentative conclusion because of the limited number of 
available examples. Note that flow visualizations of plane mixing layers to date (e.g. 
Brown & Roshko 1974; Bernal & Roshko 1986) suggest continued streamwise 
alignment of successive streaky patterns. The dominant spatial arrangement of ribs 
in a wake needs to be examined further by alternative quantitative measurements 
which would be required to take into consideration a possible relationship between 
the substructures (i.e. ribs) on both sides of the wake. 

6.3. Comparison with far-field s t r u c t u r e s  

The present experiment, which only covers up to x/d = 40, might not be totally 
relevant for discussing the far-field struoture of the wake. However, our results 
(including those of HH) suggest that the spatial behaviour of organized structures in 
the intermediate wake should bear qualitative resemblance, in many respects, to the 
one in the far wake. For instance, Browne, Antonia & Bisset (1986) and Antonia 
et ab. (1987) find by using temperature fluctuations as a trigger signal that the velocity 
vector pattern (sliced by an (2, y)-plane) of a heated cylinder wake at x/d = 420 is 
quite similar to that obtained by HH. Thus, comparison of observations in the two 
regions would help our understanding of the far-field structures as well. 

Townsend (1979) suggests that organized structures in the far wake occur as 
groups, with regular spacing between structures in a group but irregular spacing 
between groups. Wygnanski et al. (1986) and Antonia et al. (1987) observe that the 
far-field structures appear sometimes as an antisymmetric mode (like the Karman 
street) and at other times as a symmetric mode. Such trends exist in the 
instantaneous w,-maps a t  x/d = 40 (figure 2 b ;  see also figures ld-g in HH). That is, 
structures occur fairly regularly for some intervals but quite irregularly a t  others, 
and the dispersions of transverse displacement and streamwise spacing of individual 
structures are very large (structures shed from one side of the cylinder often cross the 
wake centre-plane). Thus, it is not unexpected that the structure groups as well as 
the two modes of structure arrangement can be locally observed farther downstream. 

The present data show that the most probable configuration of three-dimensional 
structures is a horseshoe-like vortex associated with a low-speed lump of fluid 
between paired (counter-rotating) 4,-concentrations, suggesting that they are 
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formed by the outward kinking of spanwise rolls (see figure 13a). This is qualitatively 
consistent with Mumford’s (1983) observation in the far wake that his type-Bf 
double rollers (similar to the w,-pattern in our figure 13a) make a considerably larger 
contribution than his type-BJ rollers (Rimilar to figure 13b). Note that asymmetric 
horseshoe-like vortices could be ambigiously recognized as a single roller, as was done 
by Mumford, because a large difference between the two legs of a horseshoe-like 
vortex can frequently occur, as discussed in $ 5 .  

The transverse structure like Grant’s model extending across the wake centreplane 
has not been detected in the intermediate wake. In this respect, Mumford (1983) 
carefully discriminated between structures confined to one side of the wake 
centreplane and those crossing it, and found that the proportion of occurrence of the 
former structures is considerably larger. Our data (figure 15a, b)  show that a non- 
negligible amount of (w , )  is educed at the centreplane (y = 0) when triggered by the 
&,-concentrations at y = 30 mm, even though the coherence drops off drastically 
across the centreplane. This suggests that  horseshoe-like vortices would occasionally 
cross the centreplane and encroach into the other side of the wake in farther 
downstream regions because of the increasing wandering of structures with increasing 
x. Therefore, it seems that most of the fraction regarded by Mumford as double-sided 
structures are not closed loops but are the usual horseshoe-like vortices originated 
from either side. 

Of course, vortex interactions (say, cut-and-connect interactions ; see Takaki & 
Hussain 1985) may cause crosslinking to rearrange two horseshoe-type vortex tubes 
from both sides of the wake into a single transverse vortex loop. However, contrary 
to suggestions by many (e.g. Roshko 1976; Coles 1982; Savill 1983), we consider that 
the closed vortex loop across the wake centreplane would be an improbable dominant 
structure even in the far field, because: horseshoe-like vortices may not frequently 
occur in a symmetric way with respect to the wake centreplane. This claim, of course, 
must be checked by applying measurement techniques such as ours to the far-field 
region. Such an effort has been started by Antonia (1987) who has adopted the X-wirc 
rake approach introduced by us (Tso 1983; Hayakawa & Hussain 1985). 

7. Concluding remarks 
It seems to us that vorticity is the best flow property to observe in the 

investigation of organized structures in turbulent shear flows (Hussain 1980, 1983 ; 
Saffman 1981 ; Coles 1982). Nevertheless, no attempt a t  multiplane vorticity 
measurements, which ought to be used to construct spatial pictures of organized 
structures, has yet been made. Thus, the present effort is a first (and perhaps 
ambitious) step. In earlier works, attention was focused on the accurate measurement 
of vorticity a t  points in the wall region of boundary-layer flows, and thus the 
vorticity probe had to be comparable with a viscous length (see, for example, a 
review article of Wallace 1986), whereas the present technique focuses primarily on 
capturing the large-scale, spatially correlated vorticity (i.e. coherent vorticity) 
directly. 

With several combinations of X-wire arrays, we achieved partial success in 
unveiling the three-dimensional nature of dominant, large-scale organized motions in 
the intermediate region of a circular cylinder wake. Our results unambiguously 
demonstrate that significant three-dimensionality occurs in the moderately near field 
of the nominally two-dimensional flow. Both spatial correlation and phasc,-aligned 
ensemble averaging of spanwise vorticity show that the typical spanwise extent of 



402 M .  Hayakawa and F .  Hussain 

two-dimensionality of the primary vortices, i.e. rolls, is comparable with the local 
half-width of the wake. The strong three-dimensionality was further confirmed by 
transverse vorticity measurements. There are frequent concentrations of transverse 
vorticity with scales and strengths of the order of the spanwise vorticity. 
Instantaneous velocity and vorticity maps, as well as ensemble-averaged transverse 
vorticities in either one or (simultaneously) two (2, 2)-planes, indicate that the 
dominant configuration of distorted rolls is a horseshoe-like vortex inclined at an 
angle of about 30' to the y-axis. In the transverse vorticity maps, we find apparent 
signatures of the longitudinal coherent substructures, i.e. ribs; the presence of the 
ribs in the wake has been inferred by Cantwell & Coles (1983) and HH from detailed 
coherent and incoherent turbulence properties obtained by a two-dimensional cut of 
the wake. However, the evidence presented here is not satisfactory owing to the 
limitation of the experimental technique by which a rigorous discrimination between 
distorted rolls and ribs could not be made. 

In  spite of the new quantitative information obtained by the present study, our 
understanding of the structure details of the plane wake in the three-dimensional 
space is still far from complete. For instance, how does a roll on one side of the wake 
interact with one on the opposite side when they are distorted in the spanwise 
direction? What is the dominant spanwise arrangement of ribs? What kind of 
interaction might occur between the ribs across the wake centreplane? These 
fundamental questions could be answered in future work which would require 
simultaneous measurements of spanwise and streamwise vorticities, perhaps 
combined with numerical simulation. A promising alternative approach may be a 
parallel study of two (apparently) extreme cases: (1) a wake behind an artificially 
excited body (to give minimal spatial jitter of shed vortices) ; and (2) a porous-plate 
wake without initial vortex shedding. Such an effort would be of considerable help 
in answering the above questions and also in resolving the persistent controversy 
regarding the generation mechanism and geometry of dominant coherent structures 
in a far-field wake. 

The present experiment was done when M. H. stayed in the University of Houston 
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M. H. would like to  thank Professors Y. Kobashi and M. Kiya for helpful discussion 
in preparing the initial draft of the paper, and also Professor S. Iida, Dr M. Ichijo and 
Mr Y. Nozaki for continuous encouragement. This research was supported by the 
Office of Naval Research under grant N00014-89-5-1361 and the Department of 
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